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Hello                                      ! Some context ..

● Nippon Electric Company is a 
Japanese multinational information 
technology company

● HQ: Tokyo, Japan
● Est. 1899, approx. 125 years old

● NEC Corporation’s global network of 
corporate research laboratories.

● HQ: Princeton, NJ
○ Our office: San Jose, CA

● Est. 1988
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My Current Research Focus

Make AI Models 

Computationally 

Efficient 

Models Integrating 

Vision & Language

Efficient Vision Transformers

Open-Vocabulary Perception

Vision-Language Models

Detect/Segment 

Any Object

in the Wild

car

person
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Talk Outline

● Zero-to-Vision Transformers (ViT)

○ Capturing Images 

○ Images to Neural Networks

○ Neural Networks to Convolutional Neural Networks

○ Convolutional Neural Networks to ViT

● ViT and their Computational Costs 

● From Paper to Deployment

● (unrelated) Pursuing Ph.D.
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Zero-to-ViT

From capturing an image to passing it 

through a ViT (from efficiency

perspective)

6
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Real world

Light source

- Focuses (reflected) light on 
to image sensor and converts 
light into electrical signals. 

- Each pixel records intensity 
and color information.

Light capturing 
device

- Light is reflected from 
physical objects

Zero-to-ViT: Capturing Images
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Real world

Light source

- Focuses (reflected) light on 
to image sensor and converts 
light into electrical signals. 

- Each pixel records intensity 
and color information.

Light capturing 
device

- Light is reflected from 
physical objects

Zero-to-ViT: Capturing Images
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Real world

Light source

Light capturing 
device

Raw Image

pixel = light intensity per color 
channel (for color/RGB images). 

Zero-to-ViT: Capturing Images
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Raw Image

- Sensors record the intensity values for 
- 3 channels [Red, Green, Blue]
- 8-bit standard

∴we get 28 =256 values  ⇒ [0, 255]

Bunch of pre-
processing

Digital Image

Zero-to-ViT: Capturing Images
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Raw Image

- Sensors record the intensity values for 
- 3 channels [Red, Green, Blue]
- 8-bit standard

∴we get 28 =256 values  ⇒ [0, 255]

Bunch of pre-
processing

These values range from
[0, 255]. 

Zero-to-ViT: Capturing Images

width

height
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Digital Image

R  ⇒ [0, 255], G  ⇒ [0, 255], B  ⇒ [0, 255]

Digital image = 
R
G
B

Zero-to-ViT: Capturing Images

width

height

Let’s call it “image” 
for simplicity!



Abhishek Aich | https://abhishekaich27.github.io/ 13

Image

Zero-to-ViT: Images to Neural Networks

[Ref.1] CSE576: Computer Vision (Spring 2006), Basics1.pdf by Linda Shapiro, University of Washington

Traditionally, ….

- To perform any “analysis” on this 
“image”, we would require some 
multiple steps, broadly divided 
into three steps.
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Image

Zero-to-ViT: Images to Neural Networks

Low level

Mid level

High level

[Ref.1] CSE576: Computer Vision (Spring 2006), Basics1.pdf by Linda Shapiro, University of Washington

(Image-to-Image) Image level manipulation 
e.g. normalization, edge detection

(Image-to-Features) Extract features 
e.g. regions of homogeneous colors

(Features-to-Analysis) Use features for 
downstream analysis e.g. object detection

Traditionally, ….
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Zero-to-ViT: Images to Neural Networks

Low level

Mid level

High level

Neural Networks

Image
⇩

Image

⇩
Analysis

Recent times, ….

Why? This is because they allow
to learn much high-dimensional 
functions!
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Zero-to-ViT: Images to Neural Networks

Image

Recent times, ….

- Remember that with current 
available hardware (GPU/CPU):

• we are memory constrained
• we are time constrained
&
• we want the best performance  
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Zero-to-ViT: Images to Neural Networks

Neural Networks

Image
⇩

⇩
Analysis

height ⤫ width ⤫ 3

height 

… 

width

analysis 

- Number of input parameters = Number of pixels
- E.g. Image of size (224, 224, 3) would result in size 

of  150528 or 0.15M parameters!
- So if the first layer is built with 1000 parameters, 

the matrix is of size [150528, 1000]

⇩

⇩

Fully connected
Neural networks 

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  
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Zero-to-ViT: Images to Neural Networks

Neural Networks

Image
⇩

⇩
Analysis

height ⤫ width ⤫ 3

height 

… 

width

analysis 

- Slow! 
- Computationally expensive (lots of energy required!)
- Also, (extremely?) poor feature learning

⇩

⇩

Fully connected
Neural networks 

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  
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Zero-to-ViT: Neural Networks to 
Convolutional Neural Networks

Neural Networks

Image
⇩

⇩
Analysis

- Fully connected NN required dense 
interaction at every layer.

- Also, no parameter sharing among the 
pixels.

- So, “convolutional” NNs were designed with 
the idea of sparse interaction and sharing
parameters  

We will see this in 
the next slide.

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

height 

width
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Zero-to-ViT: Neural Networks to 
Convolutional Neural Networks

Neural Networks

Image
⇩

⇩
Analysis

Create a network parameter
that only looks at small regions
of the image.

size of “small” region = 
size of a “kernel”

called “kernels”

Why? ⇒ “local pixels are more 
strongly related than distant 
ones” 

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  
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Zero-to-ViT: Neural Networks to 
Convolutional Neural Networks

Neural Networks

Image
⇩

⇩
Analysis

“kernel” = “filter” 
= a matrix that 
modifies input data 
in a structured way

Empirical 
value

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

Conv (P, K) = ∑pi,j ki,j
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Zero-to-ViT: Neural Networks to 
Convolutional Neural Networks

Neural Networks

Image
⇩

⇩
Analysis

- At multiple NN layers, these 
kernels are made to travel 
across the image.

Why? ⇒ “patterns may appear 
anywhere in the image” 

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  
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Zero-to-ViT: Neural Networks to 
Convolutional Neural Networks

Neural Networks

Image
⇩

⇩
Analysis

- To allow the network to learn 
better features, we stack 
multiple kernels together.

But is this good 
enough? 

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  
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Zero-to-ViT: Neural Networks to 
Convolutional Neural Networks

Neural Networks

Image
⇩

⇩
Analysis

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

But is this good enough?

↓ 

No. Kernels look at small 
regions and miss global 
information

Well, didn’t we make 
them “small” by choice?
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Neural Networks

Image
⇩

⇩
Analysis

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

Enter 
Transformers!

Yes!, and it still works great. 

BUT, with increase in available 
compute, performance gains 

are minimal.
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Neural Networks

Image
⇩

⇩
Analysis

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

Enter 
Transformers!

For sometime, let’s keep the 
efficiency aside.
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Quick history ..

[Ref.2] https://samuelalbanie.com/files/digest-slides/2023-11-vision-transformer-basics.pdf by Samuel Albanie, 
University of Cambridge , UK

- Proposed for language 
translation task in 2017.

- Take away message: Self-
attention based (language) 
sequence modeling is powerful!

- Transformers for language.
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Quick history ..

[Ref.2] https://samuelalbanie.com/files/digest-slides/2023-11-vision-transformer-basics.pdf by Samuel Albanie, 
University of Cambridge , UK

- Adapted for image/vision task 
in 2020.

- Take away message: Self-
attention based sequence 
modeling is powerful for 
images as well!

- Vision Transformers (ViT)
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

[Ref.2] https://samuelalbanie.com/files/digest-slides/2023-11-vision-transformer-basics.pdf by Samuel Albanie, 
University of Cambridge , UK

Why are they everywhere?

- Vision Transformers show better results when the dataset scales up.

ViT models perform 
worse than CNNs (BiT) 
when pre-trained on 
small datasets.

Large ViT models 
perform much better 
when pre-trained on 
larger datasets. Not 
the case in smaller 
datasets.
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

[Ref.2] https://samuelalbanie.com/files/digest-slides/2023-11-vision-transformer-basics.pdf by Samuel Albanie, 
University of Cambridge , UK

Why are they everywhere?

- Vision Transformers show better results when the dataset scales up.
- And less inductive bias!  

Fully Connected

NN

ViTsConvNN

Inductive Bias LessMore

Built-in assumptions that guide 
learning from limited data
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Self-attention?

At any single layer 
of CNNs … - Each output location for 

next layer is computed by 
convolving the kernel over 
a local patch of pixels. 

↓

- Neighborhood patches do 
not provide any context.

[Ref.3] Image source: https://commons.wikimedia.org/wiki/File:CNN-filter-animation-1.gif
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Self-attention?

At any single layer of 
Transformers …

- Each patch directly participates or attends in computation of all 
other output patches in the same layer.

↓

Let’s see how.
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Neural Networks

Image
⇩

⇩
Analysis

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

Vision Transformers

- “Transformer”  ∵

∵ They transform a set of vectors in some 

representation space into a corresponding set of 
vectors in some new space, having the same 
dimensionality.
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Neural Networks

Image
⇩

⇩
Analysis

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

Vision Transformers

- Step 1:
Divide the image 
into tokens.

Why? Because 
Transformers 
process sequences.

1 2 3

4 5 6

7 8 9

Patches = tokens
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Neural Networks

Image
⇩

⇩
Analysis

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

Vision Transformers

1 2 3 4 5 6 7 8 9

Linear layer to reduce dimensionality to D

⇩Flatten each token to 3p2

1 2 3 4 5 6 7 8 9

p

p

size = (p, p, 3)

Each token is now of length D < p2
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Neural Networks

Image
⇩

⇩
Analysis

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

Vision Transformers

- Step 2:
Add positional encodings 
to the patches.

Why? Because we need to point to the 
Transformer the position of the patch in 
the image

1 2 3 4 5 6 7 8 9

We can see the position,
transformers cannot.
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Neural Networks

Image
⇩

⇩
Analysis

Vision Transformers

1 2 3 4 5 6 7 8 9

+

⇩

L Transformer Layers

⇩
Analysis

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

1

2

N

. . .

size = (N, D)

1

2

N

. . .

size = (N, D)

= Transformer Layer

Y X

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

1

2

N

. . .

size = (N, D)

1

2

N

. . .

. . .

X Y

yn = ∑anmxm

0 ≤ anm≤ 1,           ∑anm= 1

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

Make sure: 
- contributions of certains x_n

to certain y_n would be 
higher (and lowers for 
others) and 

- not cancel out each other
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

“C milk” ?

Dairy Aisle

. . .

“A” “C”“B”

Query Key Value

“C milk” ? “A”, “B”, “C”

- We can think of the customer 
‘attending’ to the particular brand  
(value) of milk (output) whose key
most closely matches their query.

Customer

“C”

Output

We computed this 
similarity.

→
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

yn = ∑anmxm

xn xm

Query Key Value Output

yn 0 ≤ anm≤ 1,  ∑anm= 1

anm = xT
nxm

“self”-attention

anm = exp(xT
nxm)/∑exp(xT

nxm)
with constraints

m

m

m

→

∑anmxm
m

Softmax operation!

Computing element 
wise similarity
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

Y = Softmax(XXT)X

yn = ∑anmxm

anm = exp(xT
nxm)/∑exp(xT

nxm)

m

m

⇩Matrix form

No learnable/trainable 
parameter 
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

Y = Softmax(XXT)X

⇩

X≅ XU Allow a learnable 
parameter U

Y = Softmax(XUUTXT)XU
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

Y = Softmax(XUUTXT)XU

⇩
Q = XU(q)

K = XU(k)

V = XU(v)

Y = Softmax(QKT)V

Allow independent
learning

⇩
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

Y = Softmax(XUUTXT)XU

⇩
Q = XU(q)

K = XU(k)

V = XU(v)

Y = Softmax(QKT)V

Allow independent
learning

⇩

This is self-attention (with some 
scaling to stabilize the training)
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

Y = Softmax(QKT)V

U(q) U(k) U(v)

- This is single-head
self-attention.
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

Y = Softmax(QKT)V

U(q) U(k) U(v)

U(q) U(k) U(v)

- This is multi-head 
self-attention.

Remember we did 
something similar 
for CNNs?
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

Single-head self-attention

H multi-head self-attention

size = (N, HD)

size = (N, D)

size = (N, D)
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

X

Add “residual” connection to 
stabilize training. The RESNET 
paper!

Normalize the output to 
stabilize training. Standard 
practice!
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

X

- Till this point, the outputs are linear combinations 
of vectors in X (some non-linearity from the 
softmax function, but still restrictive).

Restricted scope of learning 
till this point.
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

X

- Introduce an additional linear layer!

Linear layer
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Zero-to-ViT: Convolutional Neural Networks 
to Vision Transformers

Vision Transformers

[Ref.5] Deep Learning: Foundations and Concepts: Christopher M. Bishop, Hugh Bishop

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

X

Linear layer

Y

= Transformer Layer
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ViTs and their Computational Costs 

To understand the computational cost &

connection to my research 

53

Yay! My research.
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Neural Networks

Image
⇩

⇩
Analysis

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

1
2

N

. . .

size = (N, D)

1
2

N

. . .

size = (N, D)

= Transformer Layer

Y X

- To complete this operation, the complexity is of the
order N2 !

Due to self-attention mechanism in Y = Softmax(QKT)V

ViTs and their Computational Costs 
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Neural Networks

Image
⇩

⇩
Analysis

NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

We have great performance from ViTs, 
can we make them efficient?

My analysis is for dense 
perception!
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NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Dense prediction = Object detection, 
Image segmentation, etc.

[Ref.6] Image source: https://manipulation.csail.mit.edu/segmentation.html
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NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Traditionally …

[Ref.6] Image source: https://www.cse.iitm.ac.in/~miteshk/CS7015/Slides/Handout/Lecture12.pdf

- Region Proposals : Needs carefully chosen 
- anchor box sizes (the yellow boxes) and aspect ratios 
- Non-Maximum Suppression (NMS) to remove duplicates

Main ingredient. Requires lots of 
inductive bias
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Transformer Architecture

Image
⇩

⇩
Dense perception

Traditionally …

[Ref.6] Image source: https://www.cse.iitm.ac.in/~miteshk/CS7015/Slides/Handout/Lecture12.pdf

Main ingredient. Requires lots of 
inductive bias

For segmentation, instead of 
bounding boxes, we predict masks. 
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NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

ViTs to the rescue. Enter DETR!

[Ref.7] End-to-End Object Detection with Transformers, ECCV 2020

(almost) End-to-End 
Transformer

module

DEtection TRansformer [Ref. 7]
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NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

ViTs to the rescue. Enter Mask2Former [REF. 8]!

(almost) End-to-End 
Transformer

module

DETR but for segmentation

Image (Mask, Label)

[Ref.8] Masked-attention Mask Transformer for Universal Image Segmentation, CVPR 2022
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NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception Image (Mask, Label)

- Backbone = it’s a simple feature extractor 
from images. For example, any CNN that 
provides difference scales of features.

Backbone

Encoder 
module

Decoder
module

“Backbone” cause the rest can’t work 
without it.

Mask2Former:

[Ref.8] Masked-attention Mask Transformer for Universal Image Segmentation, CVPR 2022
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NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception Image (Mask, Label)

- Encoder module = Make all the multi-scale 
features “attend” to each other and enhance 
their representations.

Backbone

Encoder 
module

Decoder
module

Mask2Former:

[Ref.8] Masked-attention Mask Transformer for Universal Image Segmentation, CVPR 2022
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NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception Image (Mask, Label)

- Decoder module = Take the “enhanced” 
features from encoder and decode them into 
masks and corresponding labels.

Backbone

Encoder 
module

Decoder
module

Mask2Former:
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NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

[Ref.7] End-to-End Object Detection with Transformers, ECCV 2020

Image (Mask, Label)

Backbone

Encoder 
module

Decoder
module

This part can be a 
CNN.

These two are pure 
transformer modules.

Mask2Former:
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NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Mask2Former:

Image (Mask,
Label)

Backbone Encoder 
module

Decoder
module↴ ↱ ↴ ↱

Random vectors that the 
decoder learns to map to 
object locations. Object 

Queries
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NOTE:

Remember that with current 
available hardware (GPU/CPU):

- we are memory constrained
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Transformer Architecture

Image
⇩

⇩
Dense perception

Mask2Former:

Image (Mask,
Label)

Backbone Encoder 
module

Decoder
module↴ ↱ ↴ ↱

Object queries are enhanced to 
object label and mask via “cross”-
attention with output from encoder Object 

Queries
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NOTE:

Remember that with current available 
hardware (GPU/CPU):
- we are memory constrained
- we are also time constrained
- we want the best performance  

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Mask2Former:
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- Unfortunately, for Mask2Former, good 
performance comes at a price of 
expensive computations. 

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Mask2Former:

We made the backbone smaller, but now the 
encoder brings the most computations.

Backbone

Encoder 
module

Decoder
module
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- Unfortunately for Mask2Former, good 
performance comes at a price of 
expensive computations. 

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Mask2Former:
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- Introducing PRO-SCALE (recently 
accepted to ICLR 2025)

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Mask2Former:

Image (Mask, Label)

Backbone

Encoder 
module

Decoder
module



Abhishek Aich | https://abhishekaich27.github.io/ 71

- Introducing PRO-SCALE (recently 
accepted to ICLR 2025)

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Mask2Former:

Image (Mask, Label)

Backbone

PRO-SCALE

Decoder
module
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- Introducing PRO-SCALE (recently 
accepted to ICLR 2025)

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Mask2Former:
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- Introducing PRO-SCALE (recently 
accepted to ICLR 2025)

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Mask2Former:

- s4 tokens computed from the backbone 
are already contain a lot of good 
information!

Extracted from the last layer 
of the backbone

Extracted from the initial layer 
of the backbone
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- PRO-SCALE works great !
- Maintains performance while reducing 

computations.

ViTs and their Computational Costs 

Transformer Architecture

Image
⇩

⇩
Dense perception

Mask2Former:
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From Paper to Deployment

So did we solve the computations

problem?
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From Paper to Deployment
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From Paper to Deployment

For dense perception,
- Real world usage requires (or hopes for) no re-training. 
- Pre-training is at core.
- Performance is becoming a data problem given 

compute and transformers.
- Making the models smaller with same performance is 

still an active research area.
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(unrelated) Pursuing Ph.D.
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Pursuing Ph.D.

- Getting a mentor early helps immensely. 

- You just have to be right once. 

- Industry has become a solid option.

- AI has driven Engineers and Scientists to same 
point, going hand-in-hand.

[Ref.9] The illustrated guide to a Ph.D., Matt Might
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Thank you!

80
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