Homework 9

Page 191 - 2. Determine whether each of these functions is $O(x^2)$.
 a) $f(x) = 17x + 11$
 b) $f(x) = x^2 + 1000$
 c) $f(x) = x \log x$
 d) $f(x) = x^{4/2}$
 e) $f(x) = 2^x$
 f) $f(x) = \text{floor}(x) \times \text{ceiling}(x)$

Page 191 - 8. Find the least integer n such that $f(x)$ is $O(x^n)$ for each of these functions.
 a) $f(x) = 2x^2 + x^3 \log x$
 b) $f(x) = 3x^3 + (\log x)^4$
 c) $f(x) = (x^4 + x^2 + 1)/(x^4 + 1)$
 d) $f(x) = (x^3 + 5 \log x)/(x^4 + 1)$

Page 199 - 4. Determine the number of multiplications used to find x^{2^k} starting with x and successively squaring (to find x^2, x^4, x^8, and so on). Is this a more efficient way to find x^{2^k} than by multiplying x by itself the appropriate number of times?

Page 208 - 6. Show that if $a, b, c,$ and d are integers such that $a \mid c$ and $b \mid d$, then $ab \mid cd$.

Page 209 - 10. What are the quotient and remainder when
 a) 44 is divided by 8?
 b) 777 is divided by 21?
 c) -123 is divided by 19?
 d) -1 is divided by 23?
 e) -2002 is divided by 87?
 f) 0 is divided by 17?
 g) 1,234,567 is divided by 1001?
 h) -100 is divided by 101?

Page 217 - 4. Find the prime factorization of each of these integers.
 a) 39
 b) 81
 c) 101
 d) 143
 e) 289
 f) 899

Page 217 - 12. Determine whether the integers in each of these sets are pairwise relatively prime.
Page 218 - 20. What are the greatest common divisors of these pairs of integers?

 a) \(2 \cdot 3^2 \cdot 5^2\), \(2^5 \cdot 3^3 \cdot 5^2\)
 b) \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13\), \(2^{11} \cdot 3^9 \cdot 11 \cdot 17^{14}\)
 c) 17, 17
 d) \(2^2 \cdot 7\), \(5^3 \cdot 13\)
 e) 0, 5
 f) \(2 \cdot 3 \cdot 5 \cdot 7\), \(2 \cdot 3 \cdot 5 \cdot 7\)

Page 218 - 28. Find the smallest positive integer with exactly \(n\) different factors when \(n\) is

 a) 3.
 e) 6.
 b) 4.
 f) 10.
 c) 5.